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Abstract. The cross sections for p− + (Hµ−)1s (H = p, d, t) are calculated in the hyperspherical close-
coupling method for collision energies below the (Hp−)n=4 threshold. The results show good convergence
with respect to basis size. The formation cross section of (Hp−)n=2 is dominant and two orders of magnitude
larger than that of (Hp−)n=1 below the (Hp−)n=3 threshold, while the (Hp−)n=3 formation cross-section
exceeds that for (Hp−)n=2 formation above the (Hp−)n=3 threshold. Resonance parameters are also cal-
culated below thresholds of (Hp−)n=2–4.

PACS. 36.10.Dr Positronium, muonium, muonic atoms and molecules

1 Introduction

The hyperspherical close-coupling (HSCC) method is a
powerful tool for studying bound states and scattering
states for three-body systems [1]. The HSCC method
has been extended to general three-body systems such as
e±–atom collisions [2,3], ion–atom collisions [4–6], muon-
transfer [7–9], three-body recombination [12,13], reactive
scattering [10,11], and nucleon systems [14], with no re-
strictions on the masses of the particles. Notable advan-
tages of the HSCC method are that (i) the convergence
with respect to the basis set is generally fast for low energy
collisions, since the basis, adiabatic channel functions, is
obtained by diagonalizing the adiabatic Hamiltonian in-
cluding all interactions among particles; (ii) the adiabatic
potential curves give useful information about resonances
and couplings among the channels; and (iii) non-local po-
tentials are completely absent in the scattering equations
even for systems in which rearrangement channels must
be considered.

We have applied the HSCC method to three-body sys-
tems consisting of a nucleus Z (=1, 2, 3) and muonic hy-
drogen in order to calculate cross sections for muon trans-
fer [15,16] and spin-flip process [17,18]. Recent progress in
experimental techniques to produce slow antiproton (p−)
beams opens up new research possibilities in a range of
fields, including atomic physics and nuclear physics [19].
In applying HSCC to muonic hydrogen targets, we con-
sider p− collisions with muonic hydrogen in the ground
state, namely, p− + (Hµ−)1s, where µ− denotes a nega-
tive muon and H stands for hydrogen isotopes (p, d, t). At
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a low-energy limit of the collision, the hydrogenic atom
(Hp−) is formed in n = 1 and 2. The notation n de-
notes the principal quantum number of the hydrogenic
atoms. The cross sections are calculated for collision ener-
gies below the (Hp−)n=4 threshold to see the contribution
of (Hp−)n=3 formation. Resonances below the (Hp−)n=2–4

thresholds are also calculated.
Unfortunately, no work on the p− +(Hµ−)1s collisions

has been reported so far. While, mass-scaled p− + H(1s)
collisions, similar to the p− + (pµ−)1s collision, were
treated by Esry and Sadeghpour [20] (mp/me = 7.4796
and 17.824) and by Hesse et al. [21] (mp/me = 100), where
mp is the scaled mass of p± and me is the electron mass.
The p− + (pµ−)1s collision corresponds to a mass scaled
p− + H(1s) collision with mp/me = 8.88.

Muon atomic units (m.a.u), where the muon mass
(mµ = 206.769 me) is set to unity, and � = e = 1 are
used throughout this paper unless otherwise stated.

2 HSCC calculation

The internal motion of three particles is described by the
hyperradius ρ and five angular variables Ω in hyperspher-
ical coordinates. In the HSCC method [15], the scatter-
ing wave function is expanded by the product of the ra-
dial function Fi(ρ) and the adiabatic channel functions
ϕi(ρ, Ω) as

ΨJΠ(ρ, Ω) =
N∑

i

Fi(ρ)
ρ5/2

ϕi(ρ, Ω) (1)

for each partial-wave J and parity Π . Inserting this ex-
pansion into the Schrödinger equation, we obtain coupled
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Fig. 1. S-wave cross sections for elas-
tic scattering and (pp−)n formation
in the mass-scaled p− + H(1s) col-
lision with mp = mp− = 100 me:
10-channel Hesse et al. [21] HSCC
calculation (solid curves), 46-channel
Hesse et al. HSCC calculation (full
circles, full triangles), present HSCC
calculation (open circles, open trian-
gles).

Fig. 2. S-wave adiabatic poten-
tial curves for (a) (p−, p, µ−), (b)
(p−, d, µ−), and (c) (p−, t, µ−) sys-
tems. The asymptotic fragmentation
described by the corresponding adi-
abatic channel function is indicated
as µ− + (pp−)n or p− + (pµ−)n,
where n denotes the principal quan-
tum number of the hydrogenic atoms.
The sets of three and four po-
tential curves above that of p− +
(Hµ−)n=1 (H = p, d, t) correspond to
fragmentations into µ− + (Hp−)n=3

and µ− + (Hp−)n=4, respectively.

differential equations for {Fi}:
(
− 1

2M
d2

dρ2
+ Ui(ρ) − E

)
Fi(ρ) +

∑

j

Wij(ρ)Fj(ρ) = 0,

(2)
where Ui(ρ) is the adiabatic potential associated with ϕi,
E is the total energy, and Wij(ρ) represents non-adiabatic
coupling. The mass parameter M is taken to be the re-
duced mass of (Hp−). Wij is sharply peaked around the
avoided crossing of the adiabatic potentials. A slight mod-
ification is made to solve the coupled equations for com-
putational convenience, namely a hybrid expansion of the
adiabatic and diabatic channel functions is adopted [15].
Since the system is an arrangement of a charged parti-
cle and a hydrogenic atom in the asymptotic region, the
dipole representation [22] is appropriate for channels in
the Jacobi coordinates. The wave function in equation (1)
is matched with the scattering boundary conditions in the
Jacobi coordinates at sufficiently large hyperradius, ρM ,
to extract the scattering matrix. The cross sections are
stable to within a few % for ρM > 400.

3 Results

Hesse et al. [21] calculated S-wave cross sections for the
mass scaled p−+H(1s) collision with mp = mp− = 100 me

using their HSCC method including 46 channels and

10 channels selected by a diabatization technique. The
mass scaled p− + H(1s) collision is analogous to p− +
(Hµ−)1s collisions. Before showing the results, we compare
the cross sections of Hesse et al. and those of the present
HSCC calculation where 35 channels dissociating into
p− +H(1s) and e− +(pp−)n=1−8 are coupled. As shown in
Figure 1, the present HSCC calculation successfully repro-
duces the cross sections of Hesse et al. Hence, the present
calculation is expected to be valid for p− + (Hµ−)1s colli-
sions. In Figure 1, the 10-channel calculation of Hesse et al.
slightly differs from the other calculations for small cross
sections of (pp−)n=5.

For p− + (Hµ−)1s collisions, HSCC calculations are
carried out for partial-waves J = 0–4 for collision ener-
gies below the (Hp−)n=4 formation threshold. Two dif-
ferent basis sets are adopted for each collision: basis set
A includes channels which describe fragmentations into
p− + (Hµ−)1s and µ− + (Hp−)n=1−3 at large ρ, and basis
set B includes channels which describe fragmentation into
µ− +(Hp−)n=4 in addition to the channels of basis set A.

3.1 Cross sections

S-wave potential curves for (p−, H = (p, d, t), µ−) systems
are shown in Figure 2. Each potential curve converges
to an atomic energy of (Hp−)n or (Hµ−)n as ρ → ∞
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Fig. 3. Cross sections (σ) multiplied by incident velocity (v)
for elastic scattering and (Hp−)n=1,2 formation in (a) p− +
(pµ−)1s, (b) p−+(dµ−)1s, and (c) p−+(tµ−)1s collisions below
the (Hp−)n=3 thresholds. Basis set A is shown by circles and
basis set B is shown by the solid curves. Ec is the center-of-
mass collision energy. The thresholds are Ec = 1140.6, 813.0,
and 630.5 eV for collisions (a), (b) and (c), respectively.

Fig. 4. Cross sections for
elastic scattering and (Hp−)n

formations for Ec near the
(Hp−)n=3 threshold and below
the (Hp−)n=4 threshold in (a)
p− + (pµ−)1s, (b) p− + (dµ−)1s,
and (c) p− + (tµ−)1s collisions.
The (Hp−)n=4 thresholds are
1748.3, 1622.5 and 1540.8 eV for
collisions (a), (b) and (c), respec-
tively.

and the corresponding channel describes the fragmenta-
tion µ−+(Hp−)n or p−+(Hµ−)n. The potential curves are
similar among the three isotope systems. The orders of the
asymptotic energies are (Hp−)n=1, (Hp−)n=2, (Hµ−)n=1,
(Hp−)n=3, (Hp−)n=4,. . . from the bottom. The potential
curve for the initial channel p− + (Hµ−)1s is located be-
tween those converging to the (Hp−)n=2 and (Hp−)n=3

thresholds at ρ → ∞. It is conjectured from Figure 2
that the p− + (Hµ−)1s channel strongly couples with the
µ−+(Hp−)n=2 channels. The reduced masses of the (Hp−)
and (Hµ−) atoms increase with the mass number of H,
and its binding energies increases likewise. Since the muon
mass is much smaller than those of H and p−, the en-
ergy difference between (Hµ−)1s and (Hp−)n=2 and be-
tween (Hµ−)1s and (Hp−)n=3 increases or decreases, re-
spectively, with an increase of the mass number of H,
owing to the reduced mass.

Figure 3 shows the cross section (σ) multiplied by
the velocity (v) below the (Hp−)n=3 formation thresh-
old against the center-of-mass collision energy (Ec). For
the low energy region, v × σ [23] behaves as v for elastic
scattering and is constant for (Hp−)n=1−2 formation. Ba-
sis sets A and B give similar results, which shows good
convergence. The formation cross section of (Hp−)n=2 is
approximately two orders of magnitude larger than that
of (Hp−)n=1. The partial cross sections in dipole states
show that (Hp−)n=2 formation occurs through the lowest
adiabatic states of the manifold at low energies, which is
consistent with HSCC calculations for mass-scaled p−+H
collisions [20,21].

Figure 4 shows the cross sections for basis set B for
collision energies near the (Hp−)n=3 thresholds and be-
low the (Hp−)n=4 thresholds. The (Hp−)n=3 formation
cross section is finite at the threshold owing to the de-
generacy of (Hp−) atoms [22,23]. The overall energy-
dependencies are similar for the three collision systems.
Resonance structures appear below the thresholds. Above
the (Hp−)n=3 thresholds, the formation cross sections for
(Hp−)n=3 increase above those for (Hp−)n=2.

In Figure 5, we show the partial-wave cross sections
for the p−+(tµ−)1s collision in basis set B as an example.
S-wave contributions are dominant for the low energy
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Fig. 5. Partial-wave cross sections for J = 0–4 in p− +(tµ−)1s

collisions. Elastic scattering and (tp−)n=2 formation for (a)
Ec < 500 eV and for (b) Ec near the (tp−)n=3 threshold
(Ec = 630.5 eV) and below the (tp−)n=4 threshold (Ec =
1540.8 eV). (c) (tp−)n=3 formation below the (tp−)n=4 thresh-
old. J = 0 (thin solid curve), J = 1 (dashed curve), J = 2
(dotted curve), J = 3 (dot-dashed curve), J = 4 (dot-dot-
dashed curve), summed cross sections (thick solid curves).

region and contributions from higher partial-waves in-
crease with collision energy. For collision energies between
the (tp−)n=3 and (tp−)n=4 thresholds, P- and D-wave con-
tributions are large for (tp−)n=2 formation, while D- and
F-wave contributions are important for (tp−)n=3 forma-
tion. Similar trends are also seen for (pµ−) and (dµ−)
targets.

Figure 6 shows � distributions, namely, σn�/
∑

� σn�, in
(Hp−)n=2 and (Hp−)n=3 formation, where � denotes the
angular momentum quantum number of the (Hp−) atom
and σn� is the cross section for (Hp−)n� formation. For
the (Hp−)n=2 formation, 2s formation is dominant at low
energies in the three collision systems, but formation of the
2p state predominates at higher energies. For (Hp−)n=3

formation, formation of the 3d state is dominant.

Table 1. Dipole moments (α < −1/4) of dipole states associ-
ated with µ− +(Hp−)n=2–4 fragmentations for partial-wave J ,
with H = p, d, t.

J µ− + (pp−)n µ− + (dp−)n µ− + (tp−)n

n = 2 manifold

S −0.624 −0.398 −0.330

P −0.261

n = 3 manifold

S −2.503 −1.714 −1.462

P −2.074 −1.396 −1.184

D −1.092 −0.665 −0.543

n = 4 manifold

S −5.673 −4.021 −3.486

P −5.225 −3.678 −3.180
−0.683

D −4.269 −2.941 −2.522

F −2.634 −1.651 −1.360

3.2 Resonances

In the asymptotic region, the present systems take the
arrangements p− + (Hµ−)n and µ− + (Hp−)n, namely, a
charged particle and a neutral hydrogenic atom at a large
distance (R). The polarization potential, which decays as
1/R4, works between a charged particle and a hydrogenic
atom in the ground state. When hydrogenic atoms are
in excited states, they interact through the dipole po-
tential, which decays as α/(2MR2), where M is their re-
duced mass and α is the dipole moment. The correspond-
ing channels are described by the dipole states [22] which
take account of the Stark effect of the hydrogenic atom
in excited states. An infinite series of resonances appears
below the threshold when α < −1/4. We show the values
of α (< −1/4) for the dipole states corresponding to the
µ− + (Hp−)n=2–4 thresholds in Table 1.

The resonance parameters are derived by fitting the
eigenphase sum to the Breit–Wigner formula [24] with a
linear background. In Table 2, we show the lowermost reso-
nances associated with the µ−+(Hp−)n=2–4 thresholds for
partial-waves J . As the reduced mass of (Hp−) increases,
|α| in Table 1 decreases for a given J and the asymp-
totic potential curve becomes less attractive. Hence, the
resonance energies below the µ− + (Hp−)n=2–4 channels
become shallower with an increase of the mass number of
H (= p, d, t).

For the energy region near the (Hµ−)1s threshold,
a broad resonance is found below the threshold in
the (p−, t, µ−) system, but not in the (p−, p, µ−) and
(p−, d, µ−) systems. As a model, regarding that the mass
of µ− is much smaller than the masses of p− and H, we
consider the bound state problem below the p−+(Hµ−)1s

threshold by the Born–Oppenheimer approach where the
adiabatic parameter is the distance between p− and H.
We solve the radial equation for each system including
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Fig. 6. State distributions calculated with basis set B for (Hp−)n=2 (upper panels) and (Hp−)n=3 (lower panels) formation in
collisions for (a) p− + (pµ−)1s, (b) p− + (dµ−)1s, and (c) p− + (tµ−)1s.

Table 2. Resonances in the (p−, H, µ−) system, with H =
(p, d, t). Each resonance is expressed as (Er, Γ/2) in eV, where
Er is the resonance energy measured from the associated
threshold and Γ is the width, with x[y] = x × 10y .

J (p−, p, µ−) (p−, d, µ−) (p−, t, µ−)

Below the µ− + (Hp−)n=2 threshold

S (−46.78, 0.47) (−0.83, 0.02) (−6.8[−3], 4[−4])

P (−0.10, 0.04)

Below the p− + (Hµ−)n=1 threshold

S (−15.3, 6.1)

Below the µ− + (Hp−)n=3 threshold

S (−12.47, 1.6) (−3.10, 0.87) (−1.5, 0.5)

P (−7.39, 1.3) (−1.35, 0.50) (−0.55, 0.25)

D (−0.65, 0.15) (−0.015, 9[−3]) (−1.1[−3], 1.5[−3])

Below the µ− + (Hp−)n=4 threshold

S (−82.80, 2.6) (−37.91, 3.8) (−25.49, 3.8)

P (−74.39, 2.8) (−32.40, 3.4) (−21.10, 3.4)

D (−56.69, 2.0) (−20.15, 2.3) (−11.92, 2.1)

F (−25.50, 2.0) (−3.79, 0.07) (−1.29, 0.03)

H = p, d or t, where the adiabatic potential is the same
but the reduced mass between p− and H is different. The
existence of bound states is more probable for a system of
heavier reduced mass, which explains the present result.

4 Summary

We have calculated the cross sections for p− collisions
with muonic hydrogen atoms (Hµ−)1s (H = p, d, t) in the
HSCC method. The cross section in the HSCC calculation
is in good convergence with respect to basis sets. (Hp−)n=2

formation is dominant below the (Hp−)n=3 threshold. The
cross section for (Hp−)n=2 formation is about two orders
of magnitude larger than that for (Hp−)n=1 formation.
(Hp−)n=3 formation becomes larger than (Hp−)n=2 for-
mation above the (Hp−)n=3 formation threshold. Reso-
nance parameters have been obtained for the lowermost
resonances below the (Hp−)n=2–4 thresholds.

Collision experiments for the p− + (Hµ−)1s collision
are quite difficult. However, (pp)− formation through
the p− + H(1s) collision and high resolution laser spec-
troscopy of (pp−) are planned [25,26]. The population of
(pp−) after the collision is a useful parameter for subse-
quent experiments. Recently, the state-specified formation
cross section was calculated with nonperturbative quantal
calculations by Tong et al. [27,28]. They found that the
formed protonium atoms tend to be distributed in higher
angular momentum and higher principle quantum number
states as the collision energy increases. These trends are
also seen in the present system. It would be worthwhile to
calculate the state-specified formation for the p− + H(1s)
collision by different methods to verify the accuracy of the
calculations. The cross sections obtained in the present
work are available as a comparison for such methods.
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